Aller au contenu directement

Perovskite rare earth nickelates

Perovskite rare earth nickelates (RNiO3) have a rich phase diagram generated by changing the rare earth cation, R. The primary effect of this is to distort the structure, bending the nickel-oxygen-nickel bond angle. The exchange of one rare earth for another tunes the magnetic and electronic phases through a lattice distortion [1,2].

Much of the interest in nickelates is focused on predictions of high temperature superconductivity [3], their unusual antiferromagnetic order [4] and their sharp and highly controllable metal-insulator transition.

In Geneva we synthesise nickelate-based heterostructure as a base to study their intrinsic physics as well as to engineer novel properties arising from heterostructure effect such as unique magnetic structures, exchange bias and strain-, field- and light-tuning of the electronic state [5].

Bulk phase diagram of the perovskite nickelates RNiO3 showing how the metal-insulator transition and paramagnetic-antiferromagnetic transition can be tuned in temperature by rare earth cation size.

[1]. M. Medarde, Journal of Physics: Condensed Matter 9, (1997)

[2]. G. Catalan, Phase Transitions 81, (2008)

[3]. J. Chaloupka and G. Khaliullin, Phys. Rev. Lett. 100, (2008)

[4]. V. Scagnoli et al, Phys. Rev. B 73, (2006)

[5]. S. Catalano et al, Reports on Progress in Physics 81, (2018)


Main researchers

Lucia Varbaro, Lukas Korosec, Chih-Ying Hsu


Our publications on this topic

Jennifer Fowlie et al.
APL Materials 9, 081119 (2021)

B. Mundet et al.
Nano Letters , (2021)

I. Ardizzone et al.
Physical Review B 102, 155148 (2020)

C. Dominguez et al.
Nature Materials , (2020)

K. R. Beyerlein et al.
Physical Review B 102, 014311 (2020)

A. Schober et al.
APL Materials 8, 061102 (2020)

J. Li et al.
Nature Communications 10, 4568 (2019)

J. Fowlie et al.
Nano Letters 19, 4188-4194 (2019)

J. Fowlie
Ph.D. Thesis , (2018)

S. Catalano et al.
Reports on Progress in Physics 81, 046501 (2018)

J. Fowlie et al.
Advanced Materials , 1605197 (2017)

S. Catalano
Ph.D. Thesis , (2017)

F. Y. Bruno et al.
APL Materials 5, 016101 (2017)

G. Matoni et al.
Nature Communications 7, 13141 (2016)

V. Bisogni et al.
Nature Communications 7, 13017 (2016)

M. Gibert et al.
Nature Communications 7, 11227 (2016)

W. Hu et al.
Physical Review B 93, 161107 (2016)

J. Ruppen et al.
Phys. Rev. B 92, 155145 (2015)

M. Gibert et al.
Nano Letters 15, 7355 – 7361 (2015)

C. Piamonteze et al.
Physical Review B 92, 014426 (2015)

M. Först et al.
Nature Materials 14, 883–888 (2015)

S. Catalano et al.
APL Materials 3, 062506 (2015)

S. Catalano et al.
APL Materials 2, 116110 (2014)

A. D. Caviglia et al.
Physical Review B 88, 220401 (2013)

R. Scherwitzl
Ph.D. Thesis , (2012)

A. D. Caviglia et al.
Physical Review Letters 108, 136801 (2012)

M. Gibert et al.
Nature Materials 11, 195–198 (2012)

R. Scherwitzl et al.
Physical Review Letters 106, 246403 (2011)

R. Scherwitzl et al.
Advanced Materials 22, 5517 (2010)

R. Scherwitzl et al.
Applied Physics Letters 95, 222114 (2009)