Domains, superdomains and ripples in epitaxially strained and freestanding PbTiO3
In ferroelectric thin films, the complex interplay between mechanical and electrostatic boundary conditions allows for the formation of a large variety of domain structures with fascinating properties. These domain structures not only change the properties of the ferroelectric itself, but can also be used, in heteroepitaxial structures, to change the properties of other materials through electrostatic and structural coupling.
We study the complex ferroelastic/ferroelectric domain structure in the prototypical ferroelectric PbTiO3. We investigate epitaxially strained structures grown on (110)o-oriented DyScO3 substrates, using a combination of atomic force microscopy, laboratory and synchrotron x-ray diffraction and high-resolution scanning transmission electron microscopy. We observe that the anisotropic strain imposed by the orthorhombic substrate creates a large asymmetry in the domain configuration, with domain walls macroscopically aligned along one of the two in-plane directions. We show that the film thickness dependence of the domain periodicity deviates from the Kittel law. As the ferroelectric film thickness increases, we find that the domain configuration evolves from flux-closure to a/c-phase1, and that the large structural distortions associated with the ferroelastic domains in PbTiO3 propagate to the top layer, leading to nanoscale domain engineering in SrRuO3 thin films2.
We further investigate the evolution of the domain configuration and its scaling with the PbTiO3 film thickness in the a/c-phase using piezoresponse force microscopy and we observe a larger scale arrangement of domains into superdomains3. These superdomain structures affect the functional properties of the ferroelectric material and may play a role in switching devices such as memories. The presence of superdomains implies the existence of superdomain walls, which potentially exhibit properties intrinsically different from those of conventional ferroelastic or ferroelectric domain walls, opening the possibility of a new kind of superdomain wall-based nanoelectronics.
Finally, we remove the epitaxial strain imposed by the substrate and study the new domain configuration in a freestanding PbTiO3 membrane at different length scales using second-harmonic generation, piezo-response force microscopy, scanning transmission electron microscopy and contact resonance force microscopy. We find that the membrane exhibits well-organized ripples with ferroelectric domain configuration and mechanical properties significantly different from the flat regions of the membrane4. The inherent flexibility of this system could serve as building block for next-generation flexible electronic and optoelectronic devices.




Other related publications:
[1] C. Lichtensteiger and J. M. Triscone. “Investigation of ferroelectricity in ultrathin PbTiO3 films”. In: Integrated Ferroelectrics 61 (2004), pp. 143–148.
[2] C. Lichtensteiger, J. M. Triscone, J. Junquera, and P. Ghosez. “Ferroelectricity and tetragonality in ultrathin PbTiO3 films”. In: Physical Review Letters 94.4 (2005).
[3] M. Dawber, C. Lichtensteiger, M. Cantoni, M. Veithen, P. Ghosez, K. Johnston, K. Rabe, and J.-M. Triscone. “Unusual behavior of the ferroelectric polarization in PbTiO3/SrTiO3 superlattices”. In: Physical Review Letters 95.17 (2005).
[4] L. Despont, C. Lichtensteiger, F. Clerc, M. G. Garnier, F. J. Garcia De Abajo, M. A. Van Hove, J. M. Triscone, and P. Aebi. “X-ray photoelectron diffraction study of ultrathin PbTiO3 films”. In: European Physical Journal B 49.2 (2006), pp. 141–146.
[5] L. Despont, C. Koitzsch, F. Clerc, M. Garnier, P. Aebi, C. Lichtensteiger, J.-M. Triscone, F. Garcia De Abajo, E. Bousquet, and P. Ghosez. “Direct evidence for ferroelectric polar distortion in ultrathin lead titanate perovskite films”. In: Physical Review B – Condensed Matter and Materials Physics 73.9 (2006).
[6] M. Dawber, C. Lichtensteiger, P. Paruch, and J. M. Triscone. “Advanced fabrication and characterization of epitaxial ferroelectric thin films and multilayers”. In: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 53.12 (2006), pp. 2261–2269.
[7] C. Lichtensteiger, M. Dawber, N. Stucki, J.-M. Triscone, J. Hoffman, J.-B. Yau, C. Ahn, L. Despont, and P. Aebi. “Monodomain to polydomain transition in ferroelectric PbTiO3 thin films with La0.67Sr0.33MnO3 electrodes”. In: Applied Physics Letters 90.5 (2007).
[8] M. Dawber, N. Stucki, C. Lichtensteiger, S. Ganglio, P. Ghosez, and J. M. Triscone. “Tailoring the properties of artificially layered ferroelectric superlattices”. In: Advanced Materials 19.23 (2007), pp. 4153–4159.
[9] K. M. Rabe, M. Dawber, C. Lichtensteiger, C. H. Ahn, and J. M. Triscone. “Modern physics of ferroelectrics: Essential background”. In: Topics in Applied Physics. Vol. 105. Springer, 2007, pp. 1–30.
[10] C. Lichtensteiger, M. Dawber, and J. M. Triscone. “Ferroelectric size effects”. In: Topics in Applied Physics. Vol. 105. Springer, 2007, pp. 305–338.
[11] M. Dawber, N. Stucki, C. Lichtensteiger, S. Gariglio, and J. M. Triscone. “New phenomena at the interfaces of very thin ferroelectric oxides”. In: Journal of Physics Condensed Matter 20.26 (2008).
[12] M. Dawber, C. Lichtensteiger, and J. M. Triscone. “Phase transitions in ultra-thin ferroelectric films and fine period multilayers”. In: Phase Transitions 81.7-8 (2008), pp. 623–642.
[13] E. Bousquet, M. Dawber, N. Stucki, C. Lichtensteiger, P. Hermet, S. Gariglio, J.-M. Triscone, and P. Ghosez. “Improper ferroelectricity in perovskite oxide artificial superlattices”. In: Nature 452.7188 (2008).
[14] P. Zubko, N. Stucki, C. Lichtensteiger, and J. M. Triscone. “X-ray diffraction studies of 180◦ ferroelectric domains in PbTiO3/SrTiO3 superlattices under an applied electric field”. In: Physical Review Letters 104.18 (2010).
[15] A. Torres-Pardo, A. Gloter, P. Zubko, N. Jecklin, C. Lichtensteiger, C. Colliex, J. M. Triscone, and O. Stéphan. “Spectroscopic mapping of local structural distortions in ferroelectric PbTiO3/SrTiO3 superlattices at the unit- cell scale”. In: Physical Review B – Condensed Matter and Materials Physics 84.22 (2011).
[16] C. Lichtensteiger, P. Zubko, M. Stengel, P. Aguado-Puente, J. M. Triscone, P. Ghosez, and J. Junquera. “Ferro- electricity in Ultrathin-Film Capacitors”. In: Oxide Ultrathin Films: Science and Technology. Ed. by G. Pacchioni and S. Valeri. Wiley, 2012. Chap. 12: Ferroe, pp. 265–230.
[17] P. Zubko, N. Jecklin, N. Stucki, C. Lichtensteiger, G. Rispens, and J. M. Triscone. “Ferroelectric domains in PbTiO3/SrTiO3 superlattices”. In: Ferroelectrics 433.1 (2012), pp. 127–137.
[18] P. Zubko, N. Jecklin, A. Torres-Pardo, P. Aguado-Puente, A. Gloter, C. Lichtensteiger, J. Junquera, O. Stéphan, and J.-M. Triscone. “Electrostatic coupling and local structural distortions at interfaces in ferroelectric/paraelectric superlattices”. In: Nano Letters 12.6 (2012).
[19] C. Lichtensteiger, S. Fernandez-Pena, C. Weymann, P. Zubko, and J. M. Triscone. “Tuning of the depolarization field and nanodomain structure in ferroelectric thin films”. In: Nano Letters 14.8 (2014), pp. 4205–4211.
[20] C. Lichtensteiger, C. Weymann, S. Fernandez-Pena, P. Paruch, and J. M. Triscone. “Built-in voltage in thin ferroelectric PbTiO3 films: The effect of electrostatic boundary conditions”. In: New Journal of Physics 18.4 (2016).
[21] S. Fernandez-Peña, C. Lichtensteiger, P. Zubko, C. Weymann, S. Gariglio, and J. M. Triscone. “Ferroelectric domains in epitaxial PbxSr1- xTiO3 thin films investigated using X-ray diffraction and piezoresponse force microscopy”. In: APL Materials 4.8 (2016).
[22] C. Weymann, C. Lichtensteiger, S. Fernandez-Peña, K. Cordero-Edwards, and P. Paruch. “Improved thin film growth using Slow Kinetics Intermittent Sputtering”. In: Applied Surface Science 516 (2020).
[23] C. Weymann, C. Lichtensteiger, S. Fernandez-Peña, A. B. Naden, L. R. Dedon, L. W. Martin, and P. Paruch. “Full control of polarisation in ferroelectric thin films using growth temperature to modulate defects”. In: Advanced Electronic Materials 2000852 (2020).
Main researchers
Ludovica Tovaglieri, Lukas Korosec, Greta Segantini, Céline Lichtensteiger
References
1 Mapping the complex evolution of ferroelastic/ferroelectric domain patterns in epitaxially strained PbTiO3 heterostructures. Lichtensteiger, Hadjimichael, Zatterin, Su, Gaponenko, Tovaglieri, Paruch, Gloter, & Triscone (2023). APL Materials, 11(061126). [link]
2 Nanoscale domain engineering in SrRuO3 thin films. Lichtensteiger, Su, Gaponenko, Hadjimichael, Tovaglieri, Paruch, Gloter, & Triscone (2023). APL Materials, 11(101110). [link]
3 Investigating domain structures and superdomains in ferroelectric PbTiO3 based heterostructures on DyScO3. Tovaglieri, Hadjimichael, Torruella, Hsu, Korosec, Alexander, Paruch, Triscone & Lichtensteiger (2025). APL Materials, 13(021118). [link].
4 Curvature-Controlled Polarization in Adaptive Ferroelectric Membranes. Segantini, Tovaglieri, Roh, Hsu, Cho, Bulanadi, Ondrejkovic, Marton, Hlinka, Gariglio, Alexander, Paruch, Triscone, Lichtensteiger & Caviglia (submitted) [link]